Landing on a Comet

Key Stage 3

Topics covered: Weight and mass, standard form, comets, spacecraft, solar system

Watch the video "The Rosetta Mission", https://vimeo.com/141524496

On $12^{\text {th }}$ November 2014 a lander called Philae detached from the ESA spacecraft Rosetta and landed on Comet 67P/Churyumov-Gerasimenko. On the comet, Philae (the size of a washing machine) weighed as much as an AAA battery. Equation 1 shows the relationship between mass, m (kilograms) and weight, W (Newtons):

$$
\begin{equation*}
W=m g \tag{1}
\end{equation*}
$$

Your mass would be the same whether you're on Earth or on the Moon, but the Moon has a gravitational field strength $1 / 6^{\text {th }}$ of the Earth. So, on the Moon you would weigh a sixth of what you would on Earth.

1. Rearrange equation 1 so that m is the subject.
2. For comet 67P/Churyumov-Gerasimenko, $g=0.0001 \mathrm{~N} / \mathrm{kg}$. Write this down in standard form.
3. The weight of Philae on the comet is 0.01 N . Calculate the mass of Philae in kg.
4. How much does Philae weigh on Earth? Use $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$ and use your answer from question 3 for m.

Landing on a Comet: ANSWERS
Key Stage 3

1. $m=\frac{W}{g}$
2. $1 \times 10^{-4} \mathrm{~N} / \mathrm{kg}$
3. 100 kg
4. 1000 N
