The force of gravity

Key Stage 4

Topics covered: Newton's law of gravitation, speed, distance, time, standard form, cosmological units

Watch the video "How will the Universe end?" https://vimeo.com/122515139

The behaviour of gravity was formulated by Isaac Newton:

$$
\begin{equation*}
F=\frac{G M m}{r^{2}} \tag{1}
\end{equation*}
$$

Where F is the force of gravity in Newtons (the weight of a 1 kg mass is 10 Newtons); M is the mass of the heavier object (e.g. a star) in kilograms; m is the mass of the lighter object (e.g. a planet) in kilograms; r is the distance between the objects in metres; G is the gravitational constant $=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$.

Figure 1

1. Use equation 1 to calculate the gravitational attraction between Valentina the astronaut and the Sun (figure 1). The mass of Valentina, m, is 58 kg ; the mass of the Sun, M, is $2 \times 10^{30} \mathrm{~kg}$; the distance between Valentina and the Sun, r, is $1.5 \times 10^{8} \mathrm{~km}$ (convert distance into metres).

Figure 2

A light-year is the distance light travels in one year. The speed of light = $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

$$
\begin{equation*}
D=s t \tag{2}
\end{equation*}
$$

$\mathrm{D}=$ distance (metres); $\mathrm{s}=$ speed $(\mathrm{m} / \mathrm{s}) ; \mathrm{t}=$ time (seconds)
2. The closest galaxy to us is Andromeda (figure 2). It is 2.5×10^{6} light-years away (light takes 2.5 million years to reach us from Andromeda). Calculate the distance to Andromeda in metres (use equation 2).
3. Use equation 1 to calculate the gravitational force between Yukiko the scientist and the nearest galaxy to us, Andromeda (figure 2). The mass of Yukiko, m, is 50 kg ; the mass of Andromeda, M, is 1.2×10^{12} Suns (multiply this by the mass of the Sun in question 1 to get total mass in kg); use your answer to question 2 for the distance, r.

The force of gravity: ANSWERS
 Key Stage 4

1. Gravitational force between Sun and Valentina $=0.34$ Newtons
2. 1 light-year $=9.47 \times 10^{15}$ metres; distance to Andromeda $=2.37 \times 10^{22}$ metres
3. Gravitational force between Andromeda and Yukiko $=1.42 \times 10^{-11} \mathrm{~N}$
