Calculating the size of a black hole

Post-16

Topics covered: Gravity, black holes, Schwarzschild radius, light-years
Watch the video "What's inside a black hole?" https://vimeo.com/88896853

Black holes exist in a broad range of sizes and masses, from stellar mass black holes (5-10 solar masses) to supermassive black holes (millions or billions of solar masses).

The Schwarzschild radius indicates the size of a black hole: if an object was placed at a distance equal to the Schwarzschild radius it would have to move at the speed of light to escape the intense gravitational field.

$$
\begin{equation*}
r_{S}=\frac{2 G m}{c^{2}} \tag{1}
\end{equation*}
$$

where r_{s} is the Schwarzschild radius (in metres), G is the gravitational constant $=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-1}, \mathrm{~m}$ is the mass of the black hole (kg) and c is the speed of light $=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$.

1. By how much must the Earth shrink to become a black hole? The (equatorial) radius of the Earth is 6378 km and its average density is 5.5 $\mathrm{g} \mathrm{cm}^{-3}$. Make sure your units are consistent.
2. The mass of the Milky Way is 1250 billion solar masses and its diameter is 100000 light-years. A light-year is the distance that light travels in a year e.g. if a star is 0.2 light-years away the light has travelled for 0.2 years. The mass of the Sun is $1.989 \times 10^{30} \mathrm{~kg}$. Calculate the size our galaxy must be to become a black hole in lightyears.

Calculating the size of a black hole: ANSWERS Post-16

1. r_{s} of Earth $=9 \mathrm{~mm}$, diameter would have to shrink by a factor of 7.1×10^{8} (710 million)
2. 3.7×10^{15} metres $=0.4 \mathrm{ly}$
